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SUMMARY

The hippocampus is known to support recollection
memory, but the relation between its structure and
recollection in healthy adults has not been estab-
lished. Here we show that the hippocampus
(including subiculum, DG, and CA1–CA4), when
separated into posterior and anterior segments,
can reliably predict recollection in healthy young
adults. Better memory was associated with larger
posterior and smaller anterior segments, as evalu-
ated relative to the uncal apex. Overall hippocampal
volume, however, did not predict memory. This
pattern was confirmed in four separate data sets
from different studies and laboratories. The relation-
ship between the posterior hippocampus and
memory was mediated by the structure’s functional
connectivity with a neocortical network identified
during a postencoding resting-state scan. The rela-
tionship was also weakest in an experiment involving
no appreciable study-test interval. These findings
suggest that enhanced posterior-hippocampal post-
encoding processes may account for the memory
benefit associated with larger posterior hippocampi.

INTRODUCTION

Efforts to explain individual differences in human memory using

brain anatomy have centered on the hippocampus (defined here

as the subiculum, dentate gyrus, and cornu ammonis regions,

including fields CA1–CA4). This structure has known functional

importance for the encoding, storage, and, many argue, retrieval

of recollection memory (RM), a form of memory involving

a detailed reexperiencing of individual episodes that is charac-

terized by retrieval of an item and its context (Moscovitch

et al., 2005; Eichenbaum et al., 2007). Indeed, among dementia

and amnesic patients, smaller hippocampi predict worse

memory (Van Petten, 2004), just as hippocampal volume and

memory decline together with age in older adults (Raz, 2000).

However, among healthy young adults, published correlations

between hippocampal volume and memory approach a normal

distribution of about zero (Van Petten, 2004). Nonetheless,
Maguire et al. (2000) have shown that extensive spatial memory

acquisition leads to enlargement of the posterior hippocampus

at the expense of anterior hippocampal volume (pHPC and

aHPC; dorsal ventral in nonprimate mammals). This suggests

that the crucial predictor of individual differences in recollection

may not be overall hippocampal volume (HPC) but the separate

contributions of pHPC and aHPC segments, a hypothesis we

test in this paper.

This hypothesis is supported by neuroanatomical and func-

tional evidence that pHPC and aHPC have dissociable proper-

ties. For instance, in primates, the segments connect with

different bands of the entorhinal cortex, a key link between the

hippocampus and cerebral cortex (Fanselow and Dong, 2010).

Also, hippocampal connections with the retrosplenial cortex

and themammillary bodies arise primarily frompHPC in primates

(Aggleton et al., 2005; Kobayashi and Amaral, 2003), and the link

between these structures and the hippocampus has been shown

to be important specifically for RM (Vann et al., 2009). This

anatomical link is suggestive of favorable conditions for recollec-

tion in pHPC, and consistent with this notion, damage to the

dorsal, but not ventral, portion of the rodent hippocampus

impairs Morris water maze performance (Moser and Moser,

1998). In humans, Scoville and Milner (1957) and Penfield and

Milner (1958) noted that global amnesia in patients with medial

temporal lobe resection was evident only when pHPC was

affected bilaterally, and Smith and Milner (1981) observed

a similar drop in performance on tests of object-locationmemory

following right pHPC lesions in patients with unilateral temporal

lobectomy, although all of these patient observations were

confounded with the amount of resected tissue. More recently,

high-resolution neuroimaging and single-unit recordings have

hinted at greater pHPC involvement in spatial and verbal

memory (Maguire et al., 2000; Ludowig et al., 2008). Finally,

pHPC in particular has been found to be sensitive to spatial infor-

mation, which is thought to play a role in RM (Ryan et al., 2010).

To the extent that pHPC is more closely associated with RM

and that pHPC and aHPC volumes trade off against one another,

relatively large pHPC volumes—and conversely, small aHPC

volumes—might be expected to predict enhanced RM, even in

the absence of any effect of HPC. To test this hypothesis, we

collected anatomical magnetic resonance imaging (MRI) and

functional MRI (fMRI) scans from healthy young adults, derived

various measures of hippocampal volume and connectivity

(see Table S1 available online), and examined their correlations
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Figure 1. Hippocampus-Memory Correlations in Four Data Sets

The posterior boundary of the aHPC was the most posterior coronal slice in which the uncal apex was visible (indicated in A; absent in B; Weiss et al., 2005).

Example aHPC (red) and pHPC parcellations (blue) from one participant’s T1 scan are overlaid on a sagittal anatomical image (C). Boxplots illustrate hippo-

campus metric distributions (D and E). Correlations between hippocampus metrics and RM (F) and recognition memory (G) are plotted for four data sets.

Coefficients are bounded by bootstrapped 95% confidence intervals (those excluding zero indicate reliable linear fits at a = 0.05). pHPC-based measures

correlated most reliably with RM (less so with d’). See also Figure S1 for entorhinal cortex correlations.
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with source memory. Because source memory directly mea-

sures retention of contextual information, it is well matched to

the construct of RM, which entails retrieval of contextual infor-

mation (Tulving, 1985). Also, under conditions in which familiarity

cannot contribute to source judgments, source memory closely

resembles modeled RM parameters in recognition memory

(Yonelinas, 1999). To test the generality of our findings, we

submitted three other RM studies with different materials and

protocols to the same analysis.

RESULTS AND DISCUSSION

Source memory correlated positively with pHPC volume in

both hemispheres and negatively with aHPC volume in the left
932 Neuron 72, 931–937, December 22, 2011 ª2011 Elsevier Inc.
hemisphere (Figure 1). To distinguish between absolute hippo-

campus volume and the relative size of pHPC, we calculated

HPC (pHPC + aHPC) and pHPC (pHPC/aHPC) volume ratio in

both hemispheres. Source memory correlated positively with

pHPC volume ratios in both hemispheres, but not with HPC

(Figure 1).

To validate this result and probe for possible dissociations

between recollection and nonrecollection forms of memory,

we obtained three published data sets with RM measures

and anatomical brain images. The behavioral measures (see

Table S2 for descriptive information) were source and recogni-

tion memory for scenes (Poppenk et al., 2010b), remember/

know recognition for pairs of words (Cohn et al., 2009),

and remember/know recognition for picture-word pairs



Figure 2. Brain-Behavior Correlations in

Aggregate Data Set

Larger pHPC volumes and volume ratios and

smaller aHPC volumes predicted better RM

(A, averaged across hemispheres, mean-centered

within experiment). No positive relations were

observed for digit span (B). Mean left and right

hippocampus volume is plotted along the struc-

ture’s long axis with a shaded 95% confidence

interval (C, aligned to uncal apex at dashed line).

Filled green and red full circles depict coordinates

at which volume positively and negatively

correlated with RM, respectively (thresholded at

p < 0.05). Empty circles depict near-significant

trends, p < 0.1. See also Figure S2 for hemisphere-

specific plots.
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(Skinner et al., 2010). We derived RM (R) and familiarity (d’) esti-

mates for each study: right pHPC volume ratios, but not HPC,

predicted R in all three data sets (Figure 1F). Effects of d’ resem-

bled weaker and less reliable R effects among hippocampal

measures (Figure 1G; cf. entorhinal cortex in Figure S1).

Correlations between aHPC and RM were consistently nega-

tive, but not reliable, within single data sets. For a more sensitive

test, we conducted a multilevel analysis that combined data

points from all four studies (Supplemental Experimental Proce-

dures). We found that the negative correlation was reliable in

both hemispheres (Figures 2A and S2A). Greater pHPC volumes

and volume ratios predicted better RM, whereas HPC did not.

Also, two of the data sets included a WAIS-III digit span test. In

linewith the view that the hippocampus is less pivotal for working

memory than RM, no correlations with digit span were observed

(Figures 2B and S2B). These results confirmed our hypothesis

that pHPC volume, but not HPC, would predict RM and sug-

gested that this prediction was selective to long-term memory.

Because several of our hippocampal measures predicted RM,

weexploredwhether their predictivepower couldbecombined to

form a stronger model. However, a forward stepwise version of

ourmultistudy analysis (Supplemental Experimental Procedures)

included only the right pHPC volume ratio in the final model, sug-

gesting that our metrics shared most of their predictive power.

In light of this shared variance, it is interesting to consider that

the correlation we observed between pHPC volume ratios and

RM may have been driven by the relative position of the uncal

apex along the longitudinal hippocampal axis because longer

segments of the hippocampus could be expected to include

greater proportions of hippocampal volume. Indeed, pHPC
Neuron 72, 931–937, December 22, 2011 ª2011 Elsevier Inc. 933
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length ratios were reliable predictors of

pHPC volume ratios (left t(53) = 7.80,

p < 0.001; right t(53) = 7.51, p < 0.001).

In addition, coordinate-based analysis

of hippocampal volume and RM ap-

peared to capture a memory benefit

associated with a longer pHPC and

shorter aHPC (Figure 2C), especially in

the left hemisphere (peak left pHPC

t(52) = 3.87, p < 0.001; left aHPC

t(52) = �2.42, p < 0.05; right pHPC
t(52) = 2.27, p < 0.05; right aHPC t(52) = �1.84, p = 0.071)

However, pHPC volume ratios were predictive of RM even afte

separating variance associated with pHPC length ratios (lef

t(52) = 2.01, p < 0.05; right t(52) = 3.48, p < 0.001), whereas

the opposite pattern did not hold (left t(52) = 1.02, p > 0.3; righ

t(52) = �0.49, p > 0.6). That is, hippocampal volumetric informa-

tion contributed the same information provided by apex position

plus additional information.

Just as concurrent increases in pHPC volume and decreases

in aHPC volume have been observed followingmassive accumu

lation of spatial memories by London taxi drivers (Maguire et al.

2000), a negative relationship was observed between left pHPC

and aHPC volumes in our combined analysis (t(52) = �3.36

p < 0.005) confirming that a tradeoff effect was present (although

this effect did not reach significance in the right hemisphere

t(52) = �1.22, p > 0.2). That pHPC and aHPC also made oppo-

site, but overlapping, predictions about RM further suggests

a tradeoff effect. Along these lines, although variance in pHPC

was predicted by HPC (left t(52) = 4.12, p < 0.001; righ

t(52) = 5.63, p < 0.001), it was the non-HPC portion of pHPC vari

ance that predicted RM in both hemispheres. pHPC was in fac

a slightly better predictor in the left hemisphere after controlling

HPC (t(51) = 4.48, p < 0.001; without control t(52) = 4.02

p < 0.001) and in the right hemisphere after controlling HPC

(t(51) = 3.91, p < 0.001; without control t(52) = 3.38, p < 0.005)

This pattern may explain why HPC has failed to predict RM in

past studies involving healthy adults, even though pHPC volume

ratio was a reliable predictor in all of the studies we analyzed.

In part because there is both little direct communication

between pHPC and aHPC (Moser and Moser, 1998; Fanselow



Figure 3. Long Axis Functional Connectivity Effects

Rotated partial least squares revealed a significant large-scale network

dissociating pHPC and aHPC covariance (A). Mean brain score is bounded by

a 95% confidence interval. Reliable differences are depicted on a glass brain

in a sagittal and transverse view (B and C) and on a template brain based on

200 young adults scanned at the Rotman Research Institute (D and E).

Differences corresponded to the cortical connections of the two hippocampal

pathways (F). (F) was modified from Duvernoy (2005) with kind permission of

Springer Science+Business Media. See also Table S3 for a list of regions and

Figure S3 for a mediation model of volume, recollection, and connectivity.
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and Dong, 2010) and in part because different large-scale

connectivity (i.e., neural context; McIntosh, 2000) has been

associated with each region (Moser and Moser, 1998; Kahn

et al., 2008; Fanselow and Dong, 2010; Poppenk et al., 2010b),

the notion of functional specialization along the long hippo-

campal axis has gained favor (Moser andMoser, 1998; Fanselow

and Dong, 2010). Drawing upon this idea, we tested the hypoth-

esis that pHPC neural context differs from that of aHPC and is

supportive of RM. We began by searching for patterns in the

ambient functional networks associated with left pHPC, left

aHPC, right pHPC, and right aHPC in our resting-state fMRI

data. To this end, we entered correlation maps associated with

these hippocampal seed regions into multivariate analysis

(PLSGUI; McIntosh and Lobaugh, 2004). The only significant

latent variable to emerge corresponded to a contrast of pHPC

and aHPC bilaterally, with this divergence especially apparent

in the right hemisphere (n = 13; singular value = 8.9, p < 0.05)

(Figure 3A). A nonrotated version of this analysis confirmed

that a contrast of pHPC and aHPC connectivity was significant

at the whole-brain level. The underlying spatial pattern involved

preferential correlation between pHPC and bilateral dorsolateral

prefrontal cortex, left anterior cingulate cortex, bilateral posterior

cingulate cortex and retrosplenial cortex, left precuneus, bilat-

eral thalamus (including anterior and dorsomedial nuclei),

bilateral inferior parietal lobe, and bilateral occipital gyrus

regions (Figures 3B–3E; Table S3). aHPC correlated preferen-

tially with the lateral temporal cortex in both hemispheres,

extending to the temporal poles bilaterally (Figures 3B–3E).

Similar findings have been reported elsewhere (Kahn et al.,

2008), but the current results extend prior evidence by formally

demonstrating the stability of the overall pattern.

Interestingly, the above pHPC- and aHPC-correlated regions

are, respectively, the cortical connections of the polysynaptic

intrahippocampal pathway (which connects with frontal and

parietal cortices via the fornix) and the direct intrahippocampal

pathway (which projects to the anterior temporal lobe via the

uncinate fasciculus; Duvernoy, 2005; Figure 3F). Connections

of the polysynaptic pathway are believed to support RM by

mediating perceptual (precuneus), attentional (inferior parietal),

and strategic (lateral frontal) contributions to it (Spaniol et al.,

2009). Integrity of the fornix, which connects the polysynaptic

pathway to cortex, is also important for RM (Tsivilis et al.,

2008; Gilboa et al., 2006). In contrast, anterior temporal connec-

tions of the direct pathway are associated with the processing of

semantic information and social and emotional cues (Rogers

et al., 2006; Olson et al., 2007). Because pHPC linked preferen-

tially with polysynaptic pathway connections, a neural context

interpretation is consistent with our finding that larger pHPC

volume ratios predict better RM.

Hippocampal covariance effects during postencoding rest

that are linked to memory success have been interpreted as

evidence of hippocampal consolidation (Tambini et al., 2010;

Ben-Yakov and Dudai, 2011). Along these lines, and because

pHPC is linked preferentially to regions associated with RM,

we explored whether greater pHPC covariance with its function-

ally connected network during postencoding rest could explain

the relationship between pHPC volume ratios and RM. A media-

tion analysis based on individual differences in pHPC ratios,
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source memory, and pHPC covariance with the region’s cortical

connections revealed that conditions required for mediation

were satisfied, with mediation explaining 55% of the volumetric

effect (Figure S3).

Mediation analysis cannot rule out the possibility that an

unknown factor is the true mediator (Judd and Kenny, 1981) or

that pHPC covariance and RM capture the same underlying

quantity. That is, mediation analysis cannot confirm that the

relationship between pHPC covariance and RM was causal.

However, pHPC covariance in a prestudy proverb interpretation

task (measured in the same manner as poststudy rest pHPC

connectivity) was unrelated to RM (r(12) = �0.15, p > 0.4).

Although the presence of a prestudy task precludes a direct

comparison of pre- and poststudy connectivity, this result

does help rule out an explanation of our result based on

person-general, noncognitive factors, such as less noisy

pHPC signal in large-pHPC individuals. Further support for

a consolidation-based account arises from the post hoc
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observation that the Skinner et al. (2010) data set featured

a study-test interval of only 30 s, whereas all other studies

had an interval of approximately 20–30 min. Interestingly, the

Skinner et al. (2010) study featured much weaker relations

between pHPC measures and RM than the other studies. This

observation, together with our mediation results, newly estab-

lishes increased hippocampal consolidation as a possible

mechanism for the relationship between pHPC volume ratios

and memory.

In conclusion, our results show that pHPC volume, especially

expressed as a ratio to aHPC volume, reliably predicts RM ability

in healthy adults. Although correlates of retrieval have been

observed along the entire hippocampal axis using functional

neuroimaging (Schacter and Wagner, 1999), the current

evidence, combined with anatomical and lesion evidence,

indicates that the contribution of pHPC is particularly crucial

(see also Fanselow and Dong, 2010; Maguire et al., 2000; Moser

andMoser, 1998; Smith andMilner, 1981), confirming the obser-

vation of Scoville and Milner (1957) and Penfield and Milner

(1958). That pHPC was related to RM in four different studies

involving various materials and procedures further indicates

that this pHPC contribution is not limited to forms of RM involving

spatial memory. We propose that the longstanding failure to

observe reliable HPC correlations with memory in past studies

(Van Petten, 2004), also observed here, may be attributable to

an inverse relationship with RM in aHPC and a tradeoff between

pHPC and aHPC volume. Finally, a mediation model was

supported by pHPC connectivity as measured between study

and test, by the absence of a comparable relationship during

a task before study, and by the observation that volumetric

effects were strongest in experiments with longer study-test

intervals. Together, this evidence suggests the above volumetric

effectsmay have been underpinned by enhanced hippocampally

based postencoding processes, possibly related to consolida-

tion, in individuals with larger pHPC volume ratios.

EXPERIMENTAL PROCEDURES

We scanned 18 participants, collecting MRI, resting-state fMRI, and memory

data (experiment 1). We also obtained permission to reanalyze three indepen-

dent fMRI data sets conducted with healthy young participants, an RM

measure such as source memory or subjective recollection, and high-resolu-

tion T1 anatomical images (experiments 2–4; Poppenk et al., 2010b; Skinner

et al., 2010; Cohn et al., 2009). fMRI data in these data sets were collected

for other primary uses and are not reported here. No additional data sets

were assessed.

Experiment 1

Overview

Experiment 1 contained a scanned study phase and poststudy resting phase,

followed by a source memory test outside of the scanner (Table S1). In addi-

tion, a prestudy repetition phase served tomake somematerials familiar (Table

S1), and study and test phases incorporated some blocks of these familiarized

materials to support investigation of stimulus novelty (to be described else-

where). Study-test stimuli consisted of novel proverbs (Asian origin), repeated

proverbs (Asian origin), and proverbs known in advance (English origin), which

allowed us to manipulate familiarity based on repetition and prior cultural

knowledge. To facilitate comparison with other studies, including the three

we obtained, we analyzed only novel items here. However, between-subjects

performance for novel items was highly correlated with overall performance

(r(15) = 0.83, p < 0.001).
Participants

Eighteen right-handed young adults, all fluent in English, participated in the

experiment (11 female; aged 21 to 34 years, mean age 26.1). Participants

were screened for the absence of neurological and psychiatric conditions and

received financial remuneration for their participation. All procedures were

approved by research ethics boards at the University of Toronto and Baycrest

Centre for Geriatric Care. One participant was excluded for outlier behavioral

performance (more than four quartiles from themedian), and onewas excluded

due to outlier hippocampus volume. Due to technical issues, we acquired

resting-state data for only 15 participants. Scans for two participants were

discarded due to excess motion artifact. In total, 16 participants were entered

into structure-function correlations and 13 into resting-state analyses.

Stimuli

Two lists of proverbs were prepared, one containing 80 common English prov-

erbs (e.g., ‘‘Toomany cooks spoil the broth’’) and the other 160 Asian proverbs

(e.g., ‘‘A single hair can hide mountains’’; for a complete list, see Poppenk

et al., 2010a). The Asian list was randomly split into ‘‘repetition’’ and ‘‘novelty’’

sets of 80 Asian proverbs for each participant.

Procedure

Three phases were of greatest importance to our analyses (Table S1):

(1) a study phase (participants were scanned with fMRI) in which proverbs

were novel or familiar (only novel items were considered in the current investi-

gation); (2) an eyes-closed resting phase between study and test (participants

were scanned with fMRI); and (3) a source memory test for all of the proverbs

encountered in the study phase. During the study phase (Table S1), half of

each proverb list was presented in a target age task: using a button-press,

participants rated whether each proverb would bemore suitable for an adoles-

cent or an adult. The other half of each list was presented in a quality-rating

task: using a button press, participants decided whether each proverb was

of good or poor quality. In the sourcememory test (Table S1), participants later

indicated whether each proverb was in the target age or quality task. Repeti-

tion of proverbs from the repeated list (items we excluded) took place prior to

study (Table S1), and aWAIS-III digit span test was administered in a follow-up

session. Scanning was performed using a 3 Tesla whole-body MRI system

(Siemens, Erlangen, Germany) installed at Baycrest Hospital in Toronto, Can-

ada (Supplemental Experimental Procedures).

Analysis of MRI Data

We derived left and right aHPC, pHPC, HPC, and entorhinal volumes from our

anatomical MRI scans using a semiautomated procedure based on FreeSurfer

(http://surfer.nmr.mgh.harvard.edu; see Supplemental Experimental Proce-

dures for details and validation). To determine whether the various measures

predicted any of our behavioral measures, we evaluated Pearson correlations

between each anatomical and behavioral measure. To evaluate the reliability

of each correlation, we employed bootstrap resampling with 100 samples to

establish 95% confidence intervals around the relationship between each

pair of variables. Correlations were considered reliable at p < 0.05 when

intervals did not encompass zero. Where data from multiple studies were

combined, multilevel modeling analysis was employed to remove between-

study sources of variance (Supplemental Experimental Procedures). To

evaluate the extent to which different variables predicted unique variance,

we conducted a stepwise linear regression with RM as a dependent variable

(Supplemental Experimental Procedures). Finally, we examined relationships

between RM and volume of individual y axis slices of the hippocampus. Hippo-

campi were aligned at the uncal apex, downsampled, and entered into analysis

as above (Supplemental Experimental Procedures).

Analysis of fMRI Data

Preprocessing of the T2-weighted functional images was performed using FSL

(Oxford Centre for Functional MRI of the Brain Software Library; Smith et al.,

2004) and included a standard denoising and spatial normalization pipeline

(Supplemental Experimental Procedures). To conduct functional connectivity

analyses using the pHPC and aHPC as seeds, we required a time series of

the mean signal from each of the two regions in each hemisphere. We first

projected each participant’s pHPC and aHPC segmentations into functional

image space. For each mask, we then created a corresponding seed vector

by recording the mean intensity of masked voxels at each time point. Next,

images were smoothed using a three-dimensional Gaussian kernel (full-width

half-maximum = 6 mm). For each participant, we separately assessed the
Neuron 72, 931–937, December 22, 2011 ª2011 Elsevier Inc. 935
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within-subject correlation between each voxel in the smoothed image time

series and each seed vector. This yielded a separate functional connectivity

image for each of four seeds: left pHPC, left aHPC, right pHPC, and right aHPC.

We entered these images into multivariate analysis using PLSGUI (McIntosh

and Lobaugh, 2004). Briefly, we concatenated correlation images of all seeds

and participants into a large matrix, applied singular value decomposition to

identify any latent variables (LVs), and evaluated the reliability of these LVs

and their singular images using resampling (Supplemental Experimental

Procedures). Because the only significant LV corresponded to a contrast of

pHPC and aHPC, we also evaluated a nonrotated version of this analysis in

which we tested this contrast explicitly. We inspected the associated boot-

strap ratio maps to determine where in the brain pHPC and aHPC connectivity

differed (Supplemental Experimental Procedures).

To explore the possibility that pHPC volume ratios expressed their effects on

RM via postencoding pHPC connectivity, we tested a mediation model. We

first obtained a connectivity summary for each participant (i.e., brain score)

by taking the product of a salience vector containing voxels that correlated

preferentially with pHPC and the matrix of participant pHPC covariance

images (obtained from the nonrotated analysis above). The resulting brain

score reflected the extent to which pHPC expressed a correlation with its

neural context in each participant. Next, we specified a causal model con-

strained by the flow of time. We reasoned that postencoding brain scores

could not have influenced pHPC volume ratios, whereas pHPC volume

ratios could have influenced brain scores (Figure S3), and that RM sampled

after rest could not have influenced brain scores, whereas resting brain activity

could have influenced RM (Figure S3). Applying the steps in establishing medi-

ation discussed by Baron and Kenny (1986), we performed three necessary

tests to show that (1) pHPC volume ratios are correlated with brain scores

(a), (2) the pHPC volume ratios are correlated with RM (c), and (3) brain scores

are correlated with RM (b), even while controlling for pHPC volume ratios (b’).

We evaluated degree of mediation as 1 – ab/c (Kenny et al., 1998).

Experiments 2–4: Obtained Data Sets. Although behavioral protocols for the

obtained data sets are published elsewhere, for convenience, brief summaries

are provided (Supplemental Experimental Procedures). In all data sets,

anatomical images were originally acquired to support spatial normalization

of fMRI data andwere not themselves analyzed.We applied the sameMRI pre-

processing and analysis procedures described in experiment 1 and included

all individuals meeting the demographic criteria used for our own data set

(i.e., healthy right-handed young adults aged 18–34 who are native speakers

of English; only two individuals did not qualify).

Group Pooling and Outlier Handling. We searched for outliers by aggre-

gating all unique individuals and identifying values falling more than four quar-

tiles from the median. We did this for both behavior and anatomical variables

(Figures 1D and 1E). This led to the removal of two individuals in the data set we

gathered (n = 16 instead of n = 18), zero individuals in Poppenk et al. (2010b)

(n = 16), one individual in the data set collected by Skinner et al. (2010) (n = 13

instead of n = 14), and zero individuals in the data set collected by Cohn et al.

(2009) (n = 13).

For the RM aggregate analysis, we combined our measure from the current

study (source memory accuracy) with that from Poppenk et al. (2010b) (source

memory accuracy), Skinner et al. (2010) (proportion of hits subjectively recol-

lected), and Cohn et al. (2009) (proportion of hits subjectively recollected).

Measures were Z scored within-study to help control for between-study

effects. One individual participated in three of these studies and was sampled

only once; all other participants participated in only one of the studies. In total,

56 individuals were included in the aggregate RM analysis.

For the digit span aggregate analysis, we combined our WAIS-III digit span

measurements with those of Skinner et al. (2010). One individual participated

in both studies and was sampled only once, and digit span data were not avail-

able from two individuals in our data set. In total, 26 individuals were included

in the aggregate digit span analysis.

SUPPLEMENTAL INFORMATION

Supplemental Information includes three figures, Supplemental Experimental

Procedures, and three tables and can be found with this article online at

doi:10.1016/j.neuron.2011.10.014.
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